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Figure 1: Illustration of our sheen model in a production setting. Low and high roughness values produce fuzzy or dusty
appearances respectively as shown in the middle column.

ABSTRACT
We introduce a new volumetric sheen BRDF that approximates
scattering observed in surfaces covered with normally-oriented
fibers. Our previous sheen model was motivated by measured cloth
reflectance, but lacked significant backward scattering. The model
presented here allows a more realistic cloth appearance and can
also approximate a dusty appearance. Our sheen model is imple-
mented using a linearly transformed cosine (LTC) lobe fitted to
a volumetric scattering layer. We detail the fitting process, and
present and discuss our results.
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1 INTRODUCTION
A fabric sheen appearance can arise from fibers that protrude from
the surface, either by construction as with velvet, or from stray
fibers that have separated from their yarn. For the highest quality
result, artists often distribute such fibers over the surface, adding
considerable rendering overhead. These fibers typically add pro-
nounced grazing reflectance in both the forward and backward
scattering directions.

Our previous sheen model [Burley 2012] produced forward scat-
tering but lacked backward scattering. Conty and Kulla [2017]
introduced a microfacet-based sheen with a normal distribution
approximating fibers distributed around the surface normal; while
this model has significant backward scattering, it has only minimal
forward scattering. Neither model produces results consistent with
our explicit fiber simulation, see the comparison in Figure 2.

2 SHEEN MODEL
Following previous work on microflake theory [Jakob et al. 2010],
a suitable far-field approximation of the desired appearance is a
volumetric layer with a fiber-like SGGX phase function [Heitz et al.
2015] aligned with the surface normal. Its cross section parameter
𝜎 ∈ [0, 1] further offers intuitive control to transition between both
fuzzy and dusty surface appearances. For our purpose, the volume is
assumed to be non-absorptive with unit density and thickness; these
values produce plausible results, and artists did not find explicit
control over their values to be useful.

Due to dominant multiple-scattering, evaluating such volumetric
appearance models requires stochastic random walks [Dupuy et al.
2016] with unacceptably high variance for our production setting.
We however found that the resulting BRDF can be surprisingly well



List of changes since the original authors version publication:

Revision 1 (2 Aug 2020):
* Included cosine term into Eq. (1) 



List of changes since the original authors version publication:

Revision 1 (2 Aug 2020):
* Included cosine term into Eq. (1) 

https://doi.org/10.1145/3532836.3536240
https://doi.org/10.1145/3532836.3536240


SIGGRAPH ’22 Talks, August 07-11, 2022, Vancouver, BC, Canada Tizian Zeltner, Brent Burley, and Matt Jen-Yuan Chiang

(d) [Conty and Kulla 2017](c) [Burley 2012]

(b) Fibers(a) Ours

Figure 2: Spheres illuminated from the front (0◦), side (90◦),
and back (130◦). Our sheen (a) qualitatively matches the ap-
pearance of explicit fibers (b) while prior work (c & d) either
lacks forward or backward scattering.

approximated with a simple LTC distribution [Heitz et al. 2016]:
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where 𝐷o is a normalized clamped cosine distribution and 𝐶sheen
is an artist-specified RGB scale. The directional hemispherical re-
flectance 𝑅i ∈ R+ and the linear transformM−1

i ∈ R3x3 both depend
on the incident elevation angle 𝜃i and an artist-specified roughness
parameter 𝛼 =

√
𝜎 .

Their values are fit to our fiber-like volume model1 for a regular
grid of 32 inputs for both 𝛼 and cos𝜃i. For a good approxima-
tion, we found it sufficient to only use non-zero matrix elements
𝑚1,1 =𝑚2,2,𝑚1,3, and 𝑚3,3 = 1. This means all parameters (two
matrix entries and 𝑅i) fit into a single 32 × 32 three-channel tex-
ture which is linearly interpolated during BRDF evaluation and
sampling.

The LTC representation enables efficient evaluation and perfect
cosine-weighted importance sampling. Because the cosine is baked
in (for sampling efficiency), the resulting BRDF is only approxi-
mately reciprocal, which we did not find problematic in practice.

We also experimented with an anisotropic version of the sheen
with fibers tilted towards an artist-specified orientation, but we
have not been able to achieve a good LTC fit. We would like to
revisit this in the future however.

Even though we use the fitted BRDF directly in a production path
tracer [Burley et al. 2018] we want to note that it could also be of
interest in real-time applications that commonly use LTC distribu-
tions to enable real-time shading from polygonal area lights [Heitz
et al. 2016].

3 RESULTS
The new sheen was added as an extra lobe on top of our production
shading model [Burley 2012]. As a result, the intensity of existing
BRDF lobes needs to be scaled down to still ensure energy conserva-
tion. This can be accomplished either based on the precomputed 𝑅i
reflectance table or by manually tuning a scale value. In the future,
1We could also have fit our LTC to a virtual BRDF capture of an explicit fiber simulation,
but the SGGX volume provided comparable results with a more precise specification.
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Figure 3: Sheen with a high roughness value (here 𝛼 = 0.85)
resembles a thin dust layer when applied on top of materials.

we would also like to explore a physically accurate layering option,
i.e. including directional blurring of the base material covered by
the sheen layer.

Figure 1 shows our sheen used in the context of a production
cloth asset. The new roughness control enables additional flexibil-
ity and can even transition to dusty appearances as illustrated in
Figure 3.

We refer to the supplementary material for more comparisons of
our sheen against prior work across different roughness levels. We
also provide code for the fitting process and the resulting BRDF.

4 CONCLUSION
We proposed a new practical and flexible sheen model for phys-
ically based rendering of fuzzy or dusty materials. Compared to
prior work, it is based on multiple-scattering in a thin volume layer
of fiber-like particles. To avoid the computational expense of ran-
dom walks, the resulting behaviour is summarized as a fitted LTC
distribution that can be efficiently evaluated and sampled.
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